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1 Introduction

In some areas of climate impact analysis, the possible impact of a changing mean
climate has been dismissed by some writers either because of a belief that society can
adapt to a slowly changing mean and/or because expected rates of future changes lie
within or not far outside those experienced in the past. The two standard counter
arguments to this optimistic view are: (1) the future will lead to much longer periods
of protracted change in one direction, with final conditions well into the no-analogue
region; and/or (2) the main impacts will accrue through changes in the frequency of
extremes. In the literature on greenhouse effect, lip service is often paid to the effect
of changes in the frequency of extremes. But just how will a slowly changing mean
affect the frequency of extremes? Quantitative discussions of this subject are rare,
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and, surprisingly, there are some extremely simple analyses that have not yet been
carried out. The purpose of this note is to remedy this deficiency.

2 The constant climate case

One of the underlying assumptions of classic extreme event theory is that the
events are sampled from a stationary population - i.e. a population whose statistical
properties (mean, variance, skewness, etc.) do not vary with time. For a future
greenhouse-influenced world, this is clearly an invalid assumption. Nevertheless, I
will begin with this assumption, both as a base case and in order to define some
terminology. All of the results in this Section are well known.

Consider an extreme event for a variable X defined by

X > Xc

where Xc is some critical value. X could be the maximum summer temperature, the
mean soil moisture deficit over the growing season, storm surge or river flood height,
etc. In the present analysis, I will assume that successive X values are uncorrelated.
This is true for a large number of impact-related variables; but there are, equally, a
number of variables for which it is not true. If the distribution function for X is f(X)
then the probability of a single extreme occurring during some specified sampling
interval is given by

Pr{X > Xc} = p =
∫ ∞

Xc

f(X)dx (1)

(In the following, the sampling interval will be taken as one year.) The probability, p,
is the inverse of the return period, τ(p), which is defined as the expected waiting
time between successive occurrences of extremes (see below). For example, if
τ(p) = 100 years, this means that, on average, we would have to wait 100 years after
an occurrence before the event occurred again.

Let us suppose that n is the actual number of years to the first occurrence of the
designated extreme event - i.e. the extreme first occurs in year n. The probability that
this will happen is simply

Pn = (1 − p)n−1 p (2)

Note that the mode for the distribution of n - i.e. the individual year in which the first
occurrence is most likely to occur - is the first year, n = 1. If p is small, however, the
probability Pn decreases only very slowly as n increases, so that, for quite a number
of years, the probability that the first occurrence of the extreme will occur in a given
year is roughly constant (and very small).

The return period is defined by

τ(p) ≡ E{n} =
∞∑

n=1

n pn (3)

where E{ } denotes expected value. This series can be summed to give

τ(p) = 1/p (4)
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Thus, an event which occurs with probability 0.01 has a 100-year return period. Since
the distribution of n is so flat, the variance of n is large. This is given by

Var{n} ≡ E
{
(n − τ)2} =

∞∑

n=1

(n − τ)2Pn = (1 − p)/(p2) (5)

which, for small p, is

Var{n} ≈ τ2 (6)

Another consequence of the flatness of the distribution of n is that there is a
substantial probability that the first occurrence of the extreme will occur well before
the return period. This effect is encapsulated in the concept of “risk”. Risk, R, is
defined as the cumulative probability of occurrence of an extreme, i.e. the probability
that a specified extreme will have occurred at least once by time t. This is given by

R =
∞∑

n=1

pn (7)

R may be expressed either as a fraction (0 < R < 1) or a percentage. From Eq. 2 it
follows that, provided p is constant,

R = 1 − (1 − p)t (8)

In the hydrological literature risk is referred to as “risk of failure”, and the time t of
interest is usually the design life of a structure.

As an example, consider an event with a return period of 100 years. The risk for
t=1 is 1% (i.e. R=0.01). For t=5, the risk is becoming appreciable, about 5%. For
t=69, the risk is 50%; for t=100 (i.e. the return period), the risk is 63%; for t=300,
the risk is 95%; and so on.

In hydrology and in protecting coastal structures against storm surges, it is
common procedure to estimate the extreme which corresponds to a specified risk
and design life. This is equivalent to calculating the return period for given R and t.
Suppose we were willing to accept a risk of 10% at t=100 years. The required value
of τ may be obtained directly by inverting Eq. 8

τ =
{
1 − (1 − R)1/t}−1 (8a)

which, for t=100 and R=0.1 gives τ = 950 years. If τ (or its equivalent, p) is known,
then the corresponding extreme can be obtained from the distribution function.

Equation 8a is well approximated by

τ ≈ −t/!n(1 − R) (8b)

which leads to the small-R result

τ ≈ t/R (8c)

An even better approximation is

τ ≈ t/R − t/2 (8d)
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which has a maximum error of only a few years for all practical values of R and t. For
example: if R = 0.1 and t = 100 years, Eq. 8d gives τ = 950 years compared with the
correct value of 949.6 years.

The flatness of the distribution of n makes it difficult to estimate reliably what the
true return period of any given event is. If an unprecedented event occurs after, say,
100 years of observations, does this mean that the return period for the event is about
100 years, or that the event has a much longer return period, but just happened to
occur, by chance, much sooner? Clearly, not much can be said on the basis of a single
event, and, in general, other extremes in the record must be considered in trying to
build up a picture of the likelihood of any given, well-defined extremes. There are
basically two approaches possible. Which one is appropriate depends on the type of
data.

The first is to consider all the data for a particular variable. For example, if one is
interested in extremes of monthly-mean temperature, then all monthly means (for a
particular month) can be used to define a distribution function, and the probability
of T > Tc (for some critical T value, Tc) is as given by Eq. 1. Alternatively, one might
consider only the extremes, either all extremes above a specified threshold or only
the maximum value in each year, and fit an appropriate distribution to these. An
example here is the maximum storm surge (i.e. tide gauge level) in a year. One can
consider just the annual maxima rather than try to fit a distribution to all tide gauge
data. Whatever the method, even if the return period is known with high accuracy,
the probability that the specified extreme will occur much sooner (or much later)
than the return period is far from small. The risk concept allows one to account for
this problem to some degree.

3 Extremes in a changing climate

What happens now if the climate is changing? Obviously, the above analyses no
longer hold. If the climate changes, the probability of the event occurring once (i.e.
in a single trial), p, is no longer a constant. In the situations this paper is concerned
with, p will increase with time, and this will in turn reduce return periods and increase
the risk of an extreme event occurring before a specified time. Just how rapidly these
changes will occur depends on the rate of change of the mean of the climate variable
being considered (X), and on whether there are changes in the other statistical
parameters which determine the distribution of X (for example, the variance). Even
if only the mean, µ changes, the effect of dµ/dt $= 0 on p will depend on the shape of
the distribution function of X, f(X).

In the climate literature, very few people have considered how frequencies of
extremes may change in a changing climate: examples are Mearns et al. (1984),
Wigley (1985) and Hansen et al. (1988), and the work of Parry (e.g. 1978) and Parry
and Carter (1985). However, in considering coastal defence systems, changes in sea
level have been considered in a number of studies. Two approaches have been used.
The first is simply to project past sea level trends to some future date, and use this
as the base level for return period and risk calculations. The second is to assume a
trend and use the method of stochastic simulation to estimate how such a trend may
affect the frequency of extremes. This is the method I will use here. Since the results
depend on f(X), I will have to make an assumption regarding the form of f: I will
suppose that X is Normally distributed with mean µ and variance σ 2.
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There is one aspect of this choice that is crucial to the analysis presented below.
By assuming that all the data used in the analysis can be represented by a single
distribution function, it is possible to calculate how p varies as the parameters of
the distribution change. In many applications, this may not be a valid assumption
since the extremes may come from one or more distinct distributions. For example,
the particular weather situations that lead to extremes of temperature, precipitation,
etc., may be unrelated to those which lead to the usual values of these variables. If
this were the case, there could be a substantial change in the mean with no change in
the frequency of the situations that produce extremes. The rest of this discussion is
predicated on the assumption that average and extreme conditions are coupled.

In the stationary case, many useful results can be obtained analytically. In the
“climate change” case, the equivalent results can easily be obtained by stochastic
simulation. The case I will consider is one in which the mean of X increases linearly
with time - corresponding to a steady warming or rise of sea level, for example. I will
suppose that “a” is the rate of increase in µ using standard deviation (σ ) units, i.e.

a = 1
σ

d
d

µ

n

where n is the number of years, so that

µ = µ0 + a(n − 1)σ

where µ0 is the initial mean.
The use of σ units means that the rate of change of µ is specified in a way which

is independent of the units used to measure X, thus allowing different variables to
be more easily compared. The change in p between time n=1 and time “n” depends
only on the total change in µ expressed in σ units and is independent of the linear

Fig. 1 Change in the
probability of exceeding a
specified extreme value as the
mean is changed, for Normally
distributed data. The three
curves correspond to “initial”
probabilities (i.e. prior to a
change in the mean) of 0.1,
0.01 and 0.001. As an example,
an event with an initial
probability of p=0.001 (point
A) becomes 140 times more
likely (p=0.14, point B) if the
mean is increased by two
standard deviations
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rate of change assumption. However, the effects of a change in the mean on return
period and risk do depend on the linearity assumption.

Changes in p for differing initial p values are shown in Fig. 1. Obviously, as (µ −
µ0)/σ becomes increasingly large, p tends to 1. The link between p and (µ − µ0)/σ is
clearly nonlinear, and is determined by the assumed distribution of X.

Although Fig. 1 shows how p increases as the mean changes in the most general
case, it is perhaps more informative to consider some more specific examples. I will
suppose that the initial (n=1) value of p (= po) is known, and pose two questions :

(1) How much is the return period reduced by a trend in the mean?
(2) How much is the risk at a certain time increased by a trend in the mean?

4 Changes in the return period

The return period corresponds to the point in time at which the expected number of
“successes” (i.e. extremes) is 1. In the absence of a trend, the expected number of
extremes per decade is constant. With a trend, the expected number of extremes per
decade increases rapidly, so one would expect a sharp decline in the return period.
This is just one aspect of a noticeable shift towards smaller values of the entire
distribution of first occurrence times. One can therefore ask the general question,
how is the distribution of the time of first occurrence of the extreme event, X > Xc
affected by a trend in µ?

The shift in the distribution can be found by carrying out a large number of
simulations as follows. For time n=1, using a suitable random number generator,
a random value of X is selected from the base-case Normal distribution, ND(µ0, σ ).
Then, for time n=2, a random value of X is selected from ND(µ = µ0+a, σ ) for time
n=3, a random value is selected from ND(µ = µ0+2a, σ ) and so on until the value of
X first exceeds the constant critical value Xc which defines the extreme event. This
gives one realisation of the first occurrence time. The distribution of first occurrence
times is obtained by repeating the procedure a few thousand times. The resulting
distribution will describe how Pn, the probability that the first extreme occurs in

Fig. 2 Changes in the return
period for an extreme event
due to a trend in the mean.
The three curves correspond
to “no trend” return periods of
20, 100 and 500 years
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year n, varies with n. It will be a generalization of Eq. 2, one which accounts for
the dependence of p on n. The return period can then be calculated using Eq. 3, and
the risk at any time found using Eq. 7.

The results depend on the chosen value of a, and on the critical level which defines
the extreme, i.e. the Xc value. For convenience, I have considered a range of values of
P0 to define the Xc values. If a=0, then the stochastic simulation simply generates the
results already given for the stationary case. Results for changes in the return period
for various values of a are shown in Fig. 2. Note that the most rapid decline in return
period as a increases is for small a (i.e. small values of the abscissa) and large values
of the “no trend” return period (i.e large values of the intercept on the ordinate).
Thus, even a small trend in the mean may markedly reduce the return period.

5 Changes in risk

It is a little more difficult to consider changes in risk in a general sense, because risk
involves two parameters, the risk level itself and the future time to which that risk
level applies. In the constant-climate case, this is not a problem because of the simple
relationship between risk, time interval and implied return period (Eqs. 8 and 8a–d).
This relationship clearly doesn’t apply in the changing-climate case; in fact, in this
case there is nothing to be gained by even trying to interpret a risk/time interval pair
in terms of an equivalent return period. The risk and return period concepts are best
considered simply as two alternative ways of assessing changes in the frequencies of
extremes.

To illustrate how a changing mean affects risk, I will consider a specific time
interval, 100 years, and various values of the initial risk, R0. Changes in risk are
easily calculated as a function of the trend in the mean using the stochastic simulation
method. The results are shown in Fig. 3. These results are quite striking, since they
indicate that risk is extremely sensitive to a change in the mean. For example, with
a trend in µ of only 0.02 σ - units per year, an event with a “no trend” risk of 0.01

Fig. 3 Changes in the risk of
occurrence of an extreme
event within years due to a
trend in the mean. The curves
shown are for “no trend” risks
of 0.01, 0.05, 0.1, 0.2 and 0.4.
For a design life of t=100
years, the corresponding
return periods (using Eq. 8a)
are 9950, 1950, 950, 449 and
196 years. As an example, if an
event has a 10% risk (R=0.1)
of occurrence in 100 years in
the absence of a trend (point
A), then the risk would be
90% if the mean were
increasing at 0.02 standard
deviations per year (point B)
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actually has a risk exceeding 0.5, while an event with a “no trend” risk of 0.2 has a
risk which is effectively 1.

6 A specific example

To give some idea of what values of a may be realistic for future changes in climate
under the greenhouse effect, I will consider monthly-mean temperatures for the
summer months in England.

From observed values of Manley’s Central England Temperature record (Manley
1974; Jones 1987), the means and standard deviations over the period 1881–1987 are:
June, µ = 14.22◦C, σ = 1.01◦C; July, µ = 15.98◦C, σ = 1.17◦C; August, µ = 15.59◦C,
σ = 1.15◦C. One of the warmest summers on record is that of 1976 with temperatures
of: June, 17.0◦C; July, 18.7◦C; August, 17.6◦C. If the data were Normally distributed
with means and standard deviations as given above, then these 1976 values would
have probabilities of exceedance of : June, p=0.0030; July, p=0.0100; August,
p=0.0402. Return periods are the inverses of these p values. For June, 1976 is the
warmest in the entire record. For July and August, the warmest values on record are:
July, 1983, T=19.6◦C, p=0.0010; August, 1975, T=18.7◦C, p=0.0034.

What rates of change can be expected in the future? These can be estimated from
the results of equilibrium GCM simulations for a 2 × CO2 world. These suggest that
the mean summer warming for England is just over 4◦C ranging between about 3◦C
and 6◦C depending on the model. (I have used data from the NCAR, GFDL, GISS
and OSU models, as summarized by Schlesinger and Mitchell, 1987.) Since these
particular models give an average equilibrium global-mean warming of around for
4◦C for 2 × CO2, the summer warming for England can be assumed to be roughly
equal to the global-mean warming value. However, the global-mean warming given
by these models is at the high end of the accepted range (viz. 1.5–4.5◦C) of possible
values for this “climate sensitivity” parameter. If we allow for this basic model
uncertainty, the range of possible 2 × CO2 equilibrium summer warming values for
England should also be about 1.5–4.5◦C. (Because of the additional uncertainties

Fig. 4 As Fig. 2, but showing
specific examples of June, July
and August 1976. The return
periods for these events in the
absence of a trend in the mean
are shown on the ordinate: a =
June, b =July, c=August.
Corresponding return periods
for a representative warming
rate of 0.03◦C yr-1 (0.03
standard deviation units per
year) are shown as points A, B
and C
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Table 1 The effect of a
warming trend on the return
periods (in years) for the June,
July and August 1976 events

Month Warming trend in degC yr−1 or S.D. units per year

0.00 0.01 0.03 0.05

June 330 75 36 26
July 100 44 25 19
August 25 18 13 11

associated with regional values, the real range of possible summer warming values
must be somewhat larger than this.)

Now, the rate of warming depends not only on the equilibrium result, which is
determined by the climate sensitivity, but also on the rate of future greenhouse
forcing and on oceanic thermal inertia effects which cause a delay between the
equilibrium and transient response. An equivalent 2 × CO2 level (i.e. allowing for
the effects of other trace gases such as methane, nitrous oxide and the CFCs) is
expected to occur by around the year 2030. The corresponding transient warming
is expected to lag substantially behind this. Just how long this lag is depends on the
assumed forcing after 2030, and on the climate sensitivity, with longer lags for lower
forcing and greater sensitivity. (This subject will be addressed at greater length in the
next issue of Climate Monitor.)

The only practical way to tackling the lag problem is to consider the transient
response directly using an appropriate time-dependent climate model. I have used
the model of Wigley and Raper (1987) and considered the rates of change over 1990–
2030 for different climate sensitivities and a range of possible future forcings. For the
most likely forcing history, as given by Wigley and Raper but modified slightly to
account for reduced CFC production under the Montreal Protocol (Wigley 1988),
the rate of change of global-mean temperature over the period 1990–2030 varies
from 0.016◦C yr−1 for low climate sensitivity (#T2x = 1.5◦C) to 0.037◦C yr−1 high
climate sensitivity (#T2x = 4.5◦C).1 If other possible future forcings are considered,
the global-mean warming rate has an overall range of uncertainty of 0.01–0.05◦C yr−1

(At the low end, the rate is comparable with rates observed this century. At the high
end, the rate of warming is much faster than anything in the observational record.)

If these rates are, as suggested above, also representative of future summer tem-
perature changes in England, then, since the σ values are about 1◦C, the appropriate
rates of change in σ -units are 0.01–0.05 yr−1. The effects of such warming rates on the
return period for the extreme warmth of 1976 are illustrated in Fig. 4 and summarized
in Table 1. For an intermediate warming rate of 0.03 yr−1, the return periods are:
June, 36 years; July, 25 years; August, 13 years. Thus, for this warming rate, there is
a high probability that the warmth of June 1976 will be equalled or surpassed at least
once by the year 2030, and it is virtually certain that the warmth of July 1976 and
August 1976 will be exceeded before 2030.

1For the latter case, the warming rate could well be somewhat faster than 0.037◦C yr−1. This is
because there is a marked discrepancy between the observed global-mean warming to date and that
which should have occurred. For observations to be compatible with a high climate sensitivity, some
other internal or external forcing mechanism must be invoked to explain the anomaly. If this were
removed, global-mean temperatures would have to warm at a faster rate than otherwise expected in
order to “catch up” to the #T2x = 4.5◦C value.
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Another way of looking at this is to note that the warm extremes that have
occurred by chance over the past 300 years are likely to be compressed into the next
40 years, with new record highs almost guaranteed - and accelerated record-breaking
as global warming continues into the twentyfirst century. Thus, if current greenhouse
projections are valid, events which we now consider to be most unusual are likely to
become commonplace well before the middle of next century.
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